ISO TC 184/SC4/ WG12 Nssss Date: 2000/09/22

Supersedes ISO TC 184/SC4/ N

ISO/WD 10303-5s
Product data representation and exchange: Integrated resource: Mesh-based topology

COPYRIGHT NOTICE: This ISO document is a working draft or committee draft and
is copyright protected by ISO. While the reproduction of working drafts or committee drafts in
any form for use by Participants in the ISO standards development process is permitted without
prior permission from ISO, neither this document nor any extract from it may be reproduced,
stored or transmitted in any form for any other purpose without prior written permission from
ISO.
Requests for permission to reproduce this document for the purposes of selling it should be
addressed as shown below (via the ISO TC184/SC4 Secretariat’s member body) or to ISO’s
member body in the country of the requester.
Copyright Manager
ANSI
11 West 42nd Street
New York, New York 10036
USA
phone: +1-212-642-4900
fax: +1-212-398-0023
Reproduction for sales purposes may be subject to royalty payments or a licensing agreement.
Violators may be prosecuted.

ABSTRACT:

This provides an initial draft of the mesh-based topology resource.

KEYWORDS: Mesh, Topology

COMMENTS TO READER:

This document presents a harmonization of the topological_definition_and_mesh, unstructured_mesh and
structured_mesh schemas from N605, and the mesh_topology and data_array schemas from the putative Part
5w. It is a revised version of the 2000/08/17 document. The formal modeling uses EXPRESS, Amendment 1.

Project Leader: Ray Cosner Project Editor: Peter Wilson

Address: Boeing, Phantom Works Address: Boeing Commercial Airplane
PO BOx 516, PO Box 3707, M/S 6H-AF
M/S S106-7126 Seattle, WA 98124-2207

St. Louis, MO 63166

Telephone: +1 (314) 2336481 Telephone: +1 (425) 237-3506
Telefacsimile: +1 (314) 777-1328 Telefacsimile: +1 (425) 327-3428

Electronic mail: raymond.r.cosner@boeing|détectronic mail: peter.r.wilson@boeing. cq

revision 7, 1/00 (PRW)

m

ISO/WD 10303-5s:2000(E) Nssss

© ISO 2000
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized

in any form or by nay means, electronic or mechanical, including photocopying and microfilm, without

permission in writing from the publisher.

International Organization for Standardization
Case Postale 56 ¢ CH-2111 Geneve 20 e Switzerland

ii

Nssss ISO/WD 10303-5s:2000(E)
Contents Page
1 SCOPE . o e 1
2 Normative references e 1
3 Terms, definitions, abbreviations, and symbols 2
3.1 Terms defined in ISO 10303-1 2
3.2 Terms defined in ISO 10303-12 2
3.3 Terms defined in ISO 10303-42 2
3.4 Other definitions e 2
3.5 Abbreviations 3
3.6 Symbolso 3

4 mesh_topology_schema)
4.1 Introduction e e e 5

4.2 Fundamental concepts and assumptions L Lo)
4.2.1 Regularmesh 5

4.2.2 Irregular mesh Lo 7

4.3 mesh_topology_schema type definitions 7
4.3.1 cell shape e 7

4.3.2 cellshape OD L 7

4.3.3 cell shape 1D L 8

4.3.4 cellshape 2D L 8

4.3.5 cell shape 3D L 9

4.4 mesh_topology_schema entity definitions 9
4.4.1 mesh e 9

4.4.2 topological region L L Lo 10

4.4.3 product_of mesh Lo 11

4.4.4 structured_mesh 12

4.4.5 rectangular_grid L Lo 13

4.4.6 cylindrical_grid 14

4.4.7 pyramidal_grid 15

4.4.8 rind e 15

4.4.9 cell_of structured_mesh, 16

4.4.10 composition_of structured_mesh 17

4.4.11 unstructured_mesh 18

4.4.12 vertex_defined_cell 18

4413 meshdata. e 26

4.4.14 meshcelldata 27

4.4.15 meshvertex data 27

4.5 mesh_topology_schema function definitions 28
4.5.1 thissschema 28

4.5.2 cell.counts 28

5 data_array_schema e 31
5.1 Introduction e e 31
©ISO 2000 — All rights reserved iii

ISO/WD 10303-5s:2000(E) Nssss

5.2 Fundamental concepts and assumptions 31

5.3 data_array_schema type definitionso 0oL 32

5.3.1 dataclass L 32

5.3.2 dataname L 33

5.3.3 adhoc dataname L Lo 33

5.3.4 standard_dataname Lo Lo Lo 34

5.3.5 coordinate datamame Lo Lo Lo 34

5.3.6 other_.datamame L L L o 36

5.4 data_array_schema entity definitions 0L 36

5.4.1 data_conversion Lo 36

5.4.2 dimensional_units L 37

5.4.3 index_ list e 38

5.4.4 index.range e 38

5.4.5 data_array 39

5.4.6 dimensional data_array Lo 44

5.4.7 nondimensional data_array L oL Lo 45

5.5 data_array_schema function definitionso 45

5.5.1 total number_of elementso oL 45

Annex A (normative) Short names of entities L. 47

Annex B (normative) Information object registration 48

B.1 Document identification oL L 48

B.2 Schema identification L Lo oo 48

Annex C (informative) EXPRESS listing. 49

Annex D (informative) EXPRESS-G diagrams 50

Index oL 57
Figures

1 Schema relationships L Lo viii

2 Example convention for a 2-D cell center L. 6

3 Example mesh with rind vertices oL 6

4 A 1-D rectangular_grid or cylindrical grid or pyramidal grid 13

5 A 2-D rectangular_grid 13

6 A 3-D rectangular_grid oL oL 13

7 A 2-D cylindrical_grid or pyramidal_grid 14

8 A 3-D cylindrical grid 14

9 A 3-D pyramidal grid 15

10 Linear, quadratic and cubic bar cells 19

11 Linear, quadratic and cubic triangle cells L. 20

12 Linear, quadratic and cubic quadrilateral cells 21

13 Linear, quadratic and cubic hexahedron cells 22

14 Linear, quadratic and cubic wedge cellso 23

iv ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)
15 Linear, quadratic and cubic tetrahedron cells 24
16 Linear, quadratic and cubic pyramid cells 0. 25
D.1 Entity level diagram of mesh_topology_schema schema (page 1 of 8) 50
D.2 Entity level diagram of mesh_topology_schema schema (page 2 of 8) 50
D.3 Entity level diagram of mesh_topology _schema schema (page 3 of 8) 51
D.4 Entity level diagram of mesh_topology_schema schema (page 4 of 8) 51
D.5 Entity level diagram of mesh_topology _schema schema (page 5 of 8) 51
D.6 Entity level diagram of mesh_topology_schema schema (page 6 of 8) 52
D.7 Entity level diagram of mesh_topology _schema schema (page 7 of 8) 52
D.8 Entity level diagram of mesh_topology_schema schema (page 8 of 8) 53
D.9 Entity level diagram of data_array schema schema (page 1 of 4) 54
D.10 Entity level diagram of data_array_schema schema (page 2 of4) 55
D.11 Entity level diagram of data_array _schema schema (page 3of4) 55
D.12 Entity level diagram of data_array_schema schema (page 4 of 4) 56
Tables

1 Symbols for dimensional units L L L oo 3
2 Symbols for coordinate systemso Lo 3
3 Symbols for unit vectors 4
4 Number of vertices in a structured_mesho 12
5 Coordinate data name identifiers L 35

©ISO 2000 — All rights reserved v

ISO/WD 10303-5s:2000(E) Nssss

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national
standards bodies (ISO member bodies). The work of preparing International Standards is nor-
mally carried out through ISO technical committees. Each member body interested in a subject
for which a technical committee has been established has the right to be represented on that
committee. International organizations, governmental and non-governmental, in liaison with
ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical
Commission (IEC) on all matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives,
Part 3.

Draft International Standards adopted by the technical committees are circulated to the member
bodies for voting. Publication as an International Standard requires approval by at least 75%
of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this International Standard
may be the subject of patent rights. ISO shall not be held responsible for identifying any or all
such patent rights.

International Standard ISO 10303-5s was prepared by Technical Committee ISO/TC 184, In-
dustrial automation systems and integration, Subcommittee SC4, Industrial data.

This International Standard is organized as a series of parts, each published separately. The
parts of ISO 10303 fall into one of the following series: description methods, integrated resources,
application interpreted constructs, application protocols, abstract test suites, implementation
methods, and conformance methods. The series are described in ISO 10301-1.

A complete list of parts of ISO 10303 is available from the Internet:
<http://www.nist.gov/sc4/editing/step/titles/>

This part of ISO 10303 is a member of the integrated resource series.

Annexes A and B are a normative part of this International Standard. Annexes C and D are
for information only.

vi ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

Introduction

ISO 10303 is an International Standard for the computer-interpretable representation and ex-
change of product data. The objective is to provide a neutral mechanism capable of describing
product data throughout the life cycle of a product independent from any particular system.
The nature of this description makes it suitable not only for neutral file exchange, but also as a
basis for implementing and sharing product databases and archiving.

Major subdivisions of this International Standard are:

— mesh_topology_schema;

— data_array_schema.

The relationships of the schemas in this part of ISO 10303 to other schemas that define the
integrated resources of this International Standard are illustrated in Figure 1 using the EX-
PRESS-G notation. EXPRESS-G is defined in annex D of ISO 10303-11. The schemas
identified in the bold boxes are specified in this part of ISO 10303. The measure_schema and
support_resource_schema are specified in part 41 of ISO 10303. The topology_schema,
mathematical_functions_schema, and structural response_representation_schema are
specified in parts 42, 50, and 104 of ISO 10303, respectively. The schemas illustrated in Figure 1
are components of the integrated resources.

There are many applications that have to deal with massive amounts of data, which is nor-
mally numerical in nature. The quantity of data may be measured in gigabytes and in some
cases terabytes. Examples include computational fluid dynamics, dynamic simulation of vehicle
behaviour, and experimental data of many kinds ranging from high energy physics to global
weather measurements.

A major concern in dealing with such data is to optimise the data representation and structure
with respect to data transmission and storage. As part of the optimisation, the data tends to be
maintained in large arrays where any particular data element can be referenced by a simple index
into the array. When the data is part of a computer simulation the data is usually associated
with a mesh of some kind — either structured or unstructured. The data may be bound to the
vertices of the mesh or to the cells of the mesh. In any case, it is also possible to represent
the simpler kinds of meshes by an indexing scheme. Within this part illustrative examples have
been principally taken from the field of computational fluid dynamics.

This part of ISO 10303 provides general, application independent, means of representing index-
ible data and meshes.

In this International Standard the same English language words may be used to refer to an
object in the real world or to a concept, and as the name of an EXPRESS data type that
represents this object or concept. The following typographical convention is used to distinguish
between these. If a word or phrase occurs in the same typeface as narrative text, the referent
is the object or concept. If the word or phrase occurs in a bold typeface, the referent is the

©ISO 2000 — All rights reserved vii

ISO/WD 10303-5s:2000(E) Nssss

topology_schema structural_response_representation_schema

mesh_topology_schema

mathematical_functions_schema

QO
data_array_schema

6 o 4

measure_schema support_resource_schema

Figure 1 — Schema relationships

EXPRESS data type. Names of EXPRESS schemas also occur in a bold typeface.

The name of an EXPRESS data type may be used to refer to the data type itself, or to an
instance of the data type. The disctinction between these uses is normally clear from the context.
If there is a likelihood of ambiguity, the phrase ‘entity data type’ or ‘instance(s) of’ is included
in the text.
Quotation marks “ 7 are used to denote text that is copied from another document. Inverted
commas ‘’ are used to denote particular string values.

Several components of this part of ISO 10303 are available in electronic form. This access is
provided through the specification of Universal Resource Locators (URLs) that identify the
location of these files on the Internet. If there is difficulty accessing these sites contact the ISO
Central Secretariat or the ISO TC184/SC4 Secretariat directly at: sc4@cme.nist.gov.

viii ©ISO 2000 — All rights reserved

WORKING DRAFT ISO/WD 10303-5s:2000(E)

Industrial automation systems and integration —

Product data representation and exchange —

Part 5s :
Integrated resource: Mesh-based topology

1 Scope
The following are within the scope of this part of ISO 10303:

— Mesh-based topologies;

— Data arrays.
The following are outside the scope of this part of ISO 10303:

— Applications of mesh topologies;

— Applications of data arrays.

2 Normative references

The following normative documents contain provisions which, through reference in this text,
constitute provisions of this international standard. For dated references, subsequent amend-
ments to, or revisions of, any of these publications do not apply. However, parties to agreements
based on this international standard are encouraged to investigate the possibility of applying the
most recent editions of the normative documents indicated below. For undated references, the
latest edition of the normative document referred to applies. Members of ISO and IEC maintain
registers of currently valid International Standards.

ISO 10303-1:1994, Industrial automation systems and integration — Product data representa-
tion and exchange — Part 1: Overview and fundamental principles.

ISO 10303-11:1994, Industrial automation systems and integration — Product data representa-
tion and exchange — Part 11: Description methods: The EXPRESS language reference manual.

ISO/TR 10303-12:1997, Industrial automation systems and integration — Product data repre-

sentation and exchange — Part 12: Description methods: The EXPRESS-I language reference
manual.

©ISO 2000 — All rights reserved 1

ISO/WD 10303-5s:2000(E) Nssss

ISO 10303-41:1994, Industrial automation systems and integration — Product data representa-
tion and exchange — Part 41: Integrated resource: Fundamentals of product description and
support.

ISO 10303-42:1994, Industrial automation systems and integration — Product data representa-
tion and exchange — Part 42: Integrated resource: Geometric and topological representation.

ISO 10303-50:2000V), Industrial automation systems and integration — Product data represen-
tation and exchange — Part 50: Integrated resource: Mathematical constructs.

ISO 10303-104:1999Y), Industrial automation systems and integration — Product data represen-
tation and exchange — Part 104: Integrated application resource: Finite element analysis.

ISO/TEC 8824-1:1995, Information technology — Abstract Syntax Notation One (ASN.1): Spec-
ification of basic notation.

3 Terms, definitions, abbreviations, and symbols
3.1 Terms defined in ISO 10303-1

— application protocol (AP)

3.2 Terms defined in ISO 10303-12

— object base

3.3 Terms defined in ISO 10303-42
— graph

3.4 Other definitions

3.4.1

cell

a connected topological region of dimensionality one or higher that is a part of, or the whole of,
the domain of a mesh.

3.4.2

mesh

an arrangement of topological regions of zero or higher dimensionality with connectivity between
the topological regions defined by the possession of common faces, edges or bounds.

3.4.3

YTo be published.

2 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

Table 1 — Symbols for dimensional units

Symbol | Description

M mass unit

L length unit

T time unit

© temperature unit
o} angle unit

Table 2 — Symbols for coordinate systems

Symbol | Description

x,y, 2 | coordinates in a Cartesian system
r, 0, z | coordinates in a Cylindrical system
r, 8, ¢ |coordinates in a Spherical system
&En, C coordinates in an auxiliary system

node
a location in a cell that is not a (bounding) vertex.

3.4.4
topological region
a point set with a single topological dimension.

3.4.5
vertex
a bound of a cell.

3.5 Abbreviations

CFD computational fluid dynamics
URL Universal Resource Locator
3.6 Symbols

Symbols for dimensional units are given in Table 1.

EXAMPLE 1 A length has dimensions L, an area has dimensions L?, and a velocity has dimensions
L/T (alternatively written as LT 1).

Symbols for coordinate systems are given in Table 2.

Associated with the coordinate systems are unit vectors, the symbols for which are given in
Table 3.

©ISO 2000 — All rights reserved 3

ISO/WD 10303-5s:2000(E)

Nssss

Table 3 — Symbols for unit vectors

Symbol Direction | Symbol Direction | Symbol Direction
€x x-direction || é, r-direction || é¢ &-direction
€y y-direction || ég f-direction || ¢, n-direction
€ z-direction || €4 ¢-direction | é¢ (-direction

©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

4 mesh_topology_schema

The following EXPRESS declaration begins the mesh_topology_schema and identifies the
necessary external references.

EXPRESS specification:

*)
{iso standard 10303 part (11) version (4)}
SCHEMA mesh_topology_schema;

REFERENCE FROM data_array_schema
(data_array) ;

REFERENCE FROM topology_schema
(topological_representation_item,
vertex) ;

REFERENCE FROM structural_response_representation_schema
(element_order);

REFERENCE FROM support_resource_schema

(label
text) ;

(*

NOTE The schemas referenced above can be found in the following parts of ISO 10303:
data_array_schema Clause 5 of this part of ISO 10303
topology_schema ISO 10303-42
structural_response_representation_schema ISO 10303-104
support_resource_schema ISO 10303-41

4.1 Introduction
This schema defines and describes the structure types for describing mesh topologies.
4.2 Fundamental concepts and assumptions

A mesh is defined by its vertices and the connections between the vertices. A mesh is a connected
graph.

4.2.1 Regular mesh

In a regular mesh, the volume is the ensemble of cells.

In a 3-D rectangular grid a cell is the hexahedron region defined by eight vertices forming the
corners of the hexahedron. Each cell is bounded by six faces, where each face is the quadrilateral

made up of four vertices. An edge links two corner vertices; a face is bounded by four edges.

In a 2-D rectangular grid a cell is the quadrilateral region defined by four vertices forming the
corners of the quadrilateral. Each cell is bounded by four sides, where a side is the line bounded

©ISO 2000 — All rights reserved 5

ISO/WD 10303-5s:2000(E) Nssss

(4,5 +1) (i+1,5+1) (i+2,5+1)
(,7) (i+1,7)
(4, 7) (i+1,5) (i+2,5)
Figure 2 — Example convention for a 2-D cell center
(5,4)
K¢~ X
| |
-mmmm ¢ ¢ ¢ ¢ - - - ----- X
| |
-mmmm ¢ ¢ ¢ ¢ - - - ----- X
| |
R e N e T X
(0,1) (1,1) (5,1) (6,1)

Figure 3 — Example mesh with rind vertices

by two vertices. A ‘side’ may be referred to as a ‘face’ or an ‘edge’.
In a 1-D mesh a cell is the line bounded by two vertices.

Indices describing a regular mesh are ordered: for 3-D (4, 7, k); (¢, 7) is used for 2-D; and () for
1-D.

Cell centers, face centers, and edge centers are indexed by the minimum of the connecting
vertices.

EXAMPLE 1 For example a 2-D cell center (or face center on a 3-D mesh) would have the conventions
shown in Figure 2.

In addition, the default beginning vertex for a regular mesh is (1,1,1); this means the default
beginning cell center of a regular mesh is also (1,1, 1).

There may be locations the mesh itself. These are referred to as ‘rind’ or ghost points and may
be associated with fictitious vertices or cell centers. They are distinguished from the vertices
and cells making up the mesh (including its boundary vertices), which are referred to as ‘core’
points.

EXAMPLE 2 Figure 3 shows a 2-D mesh with a single row of ‘rind’ vertices at the minimum and
maximum ¢-faces. The mesh size (i.e. the number of ‘core’ vertices in each direction) is 5x 4. ‘Core’
vertices are designated by ‘e’) and ‘rind’ vertices by ‘x’. Default indexing is also shown for the vertices.

For a mesh, the minimum faces in each coordinate direction are denoted ¢-min, j-min and k-
min; the maximum faces are denoted i-max, j-max and k-max. These are the minimum and

6 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

maximum ‘core’ faces.

EXAMPLE 3 i—min is the face or grid plane whose core vertices have minimum 7 index (which if using
default indexing is 1).

4.2.2 Irregular mesh

An irregular mesh is composed of vertices and cells, where the shape of the cells is not restricted
to be uniform throughout the mesh. Cells have vertices at their corners and may also have
vertices (nodes) on the edges, faces, and interior of the cell.

Each cell in an irregular mesh has at least one vertex in common with at least one other cell
in the mesh. The connectivity and adjacency of the cells may be determined from the common
vertices.

A cell is represented in terms of its shape and an ordered list of its vertices. The vertices
are implied rather than being explicitly represented. Essentially all the vertices in a mesh can
be mapped to a sequential list, and reference to a vertex is then equivalent to specifying the
particular position in the list.

4.3 mesh_topology_schema type definitions

4.3.1 cell_shape

An identifier of an unstructured mesh cell shape.

EXPRESS specification:

*)
TYPE cell_shape = EXTENSIBLE SELECT OF
(cell_shape_OD,
cell_shape_1D,
cell_shape_2D,
cell_shape_3D);
END_TYPE;
(*

4.3.2 cell_shape_0D

An identifier of a topologically 0—D unstructured mesh cell shape.

EXPRESS specification:

*)

©ISO 2000 — All rights reserved 7

ISO/WD 10303-5s:2000(E) Nssss

TYPE cell_shape_OD = EXTENSIBLE ENUMERATION OF
(single);

END_TYPE;

(*

Enumerated item definitions:

single: singleton vertex.

4.3.3 cell_shape_1D

An identifier of a topologically 1-D unstructured mesh cell shape.

EXPRESS specification:

*)

TYPE cell_shape_1D = EXTENSIBLE ENUMERATION OF
(bar) ;

END_TYPE;

(*

Enumerated item definitions:

bar: a topological line requiring a minimum of 2 vertices.

4.3.4 cell shape 2D

An identifier of a topologically 2-D unstructured mesh cell shape.

EXPRESS specification:

*)

TYPE cell_shape_2D = EXTENSIBLE ENUMERATION OF
(quadrilateral,
triangle,
polygon) ;

END_TYPE;

(*

Enumerated item definitions:

quadrilateral: topologically quadrilateral (four sided) requiring a minimum of 4 vertices;

8 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

triangle: topologically triangular (three sided) requiring a minimum of 3 vertices;
polygon: topologically polygonal (n-sided) requiring a minimum of 3 vertices;

4.3.5 cell shape 3D

An identifier of a topologically 3—D unstructured mesh cell shape.

EXPRESS specification:

*)
TYPE cell_shape_3D = EXTENSIBLE ENUMERATION OF
(hexahedron,
wedge,
tetrahedron,
pyramid) ;
END_TYPE;
(*

Enumerated item definitions:

hexahedron: topologically hexahedral (six quadrilateral faces) requiring a minimum of 8 ver-
tices.

wedge: topologically pentahedral (three quadrilateral faces and two triangular faces) requiring
a minimum of 6 vertices;

tetrahedron: topologically tetrahedral (four triangular faces) requiring a minimum of 4 ver-
tices;

pyramid: topologically pyramidal (one quadrilateral face and four triangular faces) requiring
a minimum of 5 vertices;

4.4 mesh_topology_schema entity definitions

4.4.1 mesh

The basis of all mesh topologies. A mesh is a topological _representation_item consisting
of one or more cells.

EXPRESS specification:

*)
ENTITY mesh
SUBTYPE OF (topological_representation_item) ;

©ISO 2000 — All rights reserved 9

ISO/WD 10303-5s:2000(E) Nssss

descriptions : LIST OF text;
index_count : INTEGER;
END_ENTITY;

SUBTYPE_CONSTRAINT scl_mesh FOR mesh;
ABSTRACT SUPERTYPE;
ONEOQF (structured_mesh,
unstructured_mesh) ;
END_SUBTYPE_CONSTRAINT;
(*

Attribute definitions:

descriptions: Annotation;

index_count: The number of indices required to identify uniquely a vertex or cell in the
mesh.

NOTE 1 It inherits a name attribute of type label via its topological _representation_item super-
type.

4.4.2 topological_region

A topological_region is a topological_representation_item that is a continuous point set
with a single topological dimension.

EXPRESS specification:

*)

ENTITY topological_region
SUBTYPE OF (topological_representation_item);
descriptions : LIST OF text;

dimension : INTEGER;
boundary : OPTIONAL BAG OF UNIQUE topological_representation_item;
END_ENTITY;

(*

Attribute definitions:

descriptions: Annotation;
dimension: The topological dimension of the region.

boundary: If desired, the elements forming the boundary of the region.

10 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

4.4.3 product_of mesh

A product_of_mesh is a relationship that is between:

— two operands that are a 1-dimensional mesh and an n-dimensional mesh; and
— a product that is an (n + 1)-dimensional mesh,

that indicates the (n + 1)-dimensional mesh is the Cartesian product of the operands.
The ordering of cells and vertices of the product mesh is:

— cell i +n(j — 1) of the product mesh corresponds to cell i of the first operand and cell j of
the second operand, where n is the total number of cells of the first operand;

— vertex i + m(j — 1) of the product mesh corresponds to vertex i of the first operand and
vertex j of the second operand, where m is the total number of vertices of the first operand.

EXPRESS specification:

*)
ENTITY product_of_mesh;
operands : LIST [2:2] OF mesh;
product : mesh;
WHERE
wrl : (this_schema+’.STRUCTURED_MESH’ IN TYPEQOF (operands[1])) AND
(this_schema+’ .STRUCTURED_MESH’> IN TYPEOF (operands([2])) AND
(this_schema+’ .STRUCTURED_MESH’ IN TYPEOF (product));
wr2 : operands[1].index_count = 1;
wr3 : operands[1].index_count + operands[2].index_count
= product.index_count;
END_ENTITY;
(*

Attribute definitions:

operands: the two meshes that define the product;

product: the mesh that is the Cartesian product of the operands.

Formal propositions:

wrl: All meshes shall be structured_meshes;

wr2: The first operand shall have an index_count of one;

ISO 2000 — All rights reserved 11
© g

ISO/WD 10303-5s:2000(E) Nssss

Table 4 — Number of vertices in a structured_mesh

Index_count | Rectangular Cylindrical Pyramidal
1 i i i
2 ij 1-1j+1 (—-1)j+1
3 ijk (i—1)jk+Ek (i—1)jk+1

wr3: the index_count of the product shall equal the sum of the index_counts of the operands.

4.4.4 structured_mesh

A mesh topology that is regular.

EXPRESS specification:

*)
ENTITY structured_mesh
SUBTYPE OF (mesh);
vertex_counts : ARRAY [1:SELF/mesh.index_count] OF INTEGER;

cell_counts : ARRAY [1:SELF/mesh.index_count] OF INTEGER;
rind_planes : OPTIONAL rind;
END_ENTITY;

SUBTYPE_CONSTRAINT scl_structured_mesh FOR structured_mesh;
ABSTRACT SUPERTYPE;
ONEOF (rectangular_grid,
cylindrical_grid,
pyramidal_grid) ;
END_SUBTYPE_CONSTRAINT;
(*

Attribute definitions:

vertex_counts: The number of vertices in each dimension of the mesh. The product of the
array elements is the number of vertices defining the mesh (i.e., excluding any rind points). The
number of vertices in one- two- and three-dimensional regular mesh topologies is given in Table 4,
where ¢, 7 and k correspond to the array elements vertex_counts[1], vertex_counts[2] and
vertex_counts[3], respectively.

cell_counts: The number of cells in each dimension of the mesh. The product of the array
elements is the number of cells on the interior of the mesh.

index_count: (inherited) The number of indices required to identify uniquely a vertex or cell
in the mesh is the same as the topological dimensionality (e.g., 1-D, 3-D) of the mesh.

12 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

. ’ 1

Figure 4 — A 1-D rectangular_grid or cylindrical _grid or pyramidal grid (with i = 5)

1, 4] [i, j]

[1,1] [¢,1]

Figure 5 — A 2-D rectangular_grid (with i =5, j = 4)

4.4.5 rectangular_grid

A regular mesh topology that is topologically linear in 1-D, quadrilateral in 2-D, hexahedral in
3-D, etc.

NOTE 1 [Illustrations of rectangular grid topologies are shown in Figure 4, Figure 5 and Figure 6.

EXPRESS specification:

*)

ENTITY rectangular_grid
SUBTYPE OF (structured_mesh);

END_ENTITY;

(*

[i,1, K]

[1,5,k]

[Z"]‘7 1]

B S
-,-‘-;;
Figure 6 — A 3-D rectangular_grid (with i =5, j =4, k = 3)

2000 — rights reserve 1
©ISO 200 All righ d 3

ISO/WD 10303-5s:2000(E) Nssss

[1,1] [i,1]

Figure 7 — A 2-D cylindrical_grid or pyramidal grid (with i =5, j =4)

[i, 5, K]
]
]
| |
[|
| |
1 '\ |
| N
\/ N |
| \4 |
N < | .
[lalak] ! 1] 1 ~ T [2717k]
[| ~ |
[,k\ | S
17 / S | NN
A o0 S [IARN
AN NN WX [N
) ~ kS | ~
T g S !
| ”n N N\]
’ N - N \
I/ < N ,,:I\
k - \\ L A ~
VAR Sa-- N \\
S > R I
[1,1,1) % [i,1,1]

Figure 8 — A 3-D cylindrical grid (with i =5, j =4, k = 3)

4.4.6 cylindrical grid
A regular mesh topology that is topologically linear in 1-D, a sector of a circle in 2-D (including
the centre point), a sector of a cylinder in 3-D (including the axis), etc. The cells are rectangular

except for the ring at the centre which are triangular in 2-D and pentahedral in 3-D.

The ¢ direction is in the outward radial direction, the j direction is in the circumferential
direction, and the k direction is in the axial direction.

NOTE 1 Illustrations of cylindrical grid topologies are shown in Figure 4, Figure 7 and Figure 8.

EXPRESS specification:

*)
ENTITY cylindrical_grid

14 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

[i,1, k]

[i, 1, 1]
Figure 9 — A 3-D pyramidal grid (with i =5, j =4, k = 3)
SUBTYPE OF (structured_mesh);

END_ENTITY;
(*

4.4.7 pyramidal grid
A regular mesh topology that is topologically linear in 1-D, a sector of a circle in 2-D (including
the centre point), a sector of a sphere in 3-D (including the centre point), etc. The cells are

rectangular except for the ring at the centre which are triangular in 2-D and pyramidal in 3-D.

The i direction is in the outward radial direction, the j direction is in the longitudinal (equatorial)
direction, and the k direction is in latitudinal (polar) direction.

NOTE 1 [Illustrations of pyramidal grid topologies are shown in Figure 4, Figure 7 and Figure 9.

EXPRESS specification:

*)
ENTITY pyramidal_grid
SUBTYPE OF (structured_mesh);

END_ENTITY;
(*
4.4.8 rind

rind describes the number of rind planes associated with a regular mesh.

ISO 2000 — All rights reserved 15
© g

ISO/WD 10303-5s:2000(E) Nssss

EXPRESS specification:

*)
ENTITY rind;
index_count : INTEGER;
planes : ARRAY [1:2%index_count] OF INTEGER;
END_ENTITY;
(*

Attribute definitions:

index_count: The number of indices required to reference a vertex.

planes: contains the number of rind planes attached to the minimum and maximum faces of a
regular mesh. The face corresponding to each index n of planes in 3-D is:

n =1 — ¢-min n = 2 — -max
n =3 — j-min n =4 — j-max
n =5 — k-min n = 6 — k-max

EXAMPLE 1 For a 3-D grid whose ‘core’ size is IIxJJXKK, a value of planes = [a,b,c,d,e,f]
indicates that the range of indices for the grid with this rind is:

i (1 - a, IT + b)
ool -c, 33+ d
k: (1 - e, KK + £)

4.4.9 cell_of structured_mesh

A cell_of_structured_mesh is an identified cell of a structured_mesh.

EXPRESS specification:

*)
ENTITY cell_of_structured_mesh

SUBTYPE OF (topological_region);

the_mesh : structured_mesh;

cell_identifier : ARRAY [1:index_count] OF INTEGER;
DERIVE

index_count : INTEGER := the_mesh\mesh.index_count;
END_ENTITY;
(*

16 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

Attribute definitions:

the_mesh: the structured_mesh;
cell_identifier: the indices of the cell;

index_count: the number of indices required to uniquely identify a vertex or cell in the mesh;

4.4.10 composition_of structured_mesh

A composition_of_structured_mesh is a relationship between two structured_meshes that
indicates one is part of the other.

EXPRESS specification:

*)
ENTITY composition_of_structured_mesh;
part : structured_mesh;
whole : structured_mesh;
lower_vertex : ARRAY [1:whole_indices] OF INTEGER;
lower_face : ARRAY [1:whole_indices] OF OPTIONAL BOOLEAN;

used_indices : ARRAY [l:part_indices] OF INTEGER;
used_senses : ARRAY [l:part_indices] OF BOOLEAN;
DERIVE
whole_indices : INTEGER :
part_indices : INTEGER :
END_ENTITY;
(*

whole\mesh.index_count;
part\mesh.index_count;

Attribute definitions:

part: the structured_mesh that is part of the whole;
whole: the structured_mesh that contains the part;

lower_vertex: The position of the vertex in the whole that is the origin of the part. This is
specified with respect to each index of the whole.

used_indices: the indices of the whole that are also indices of the part in the order that they
are used in the part;

used_senses: the sense for each index of part as:

— TRUE if the part uses the index of the whole in the same direction;

— FALSE if the part uses the index of the whole in the reverse direction;

whole_indices: the number of indices required to uniquely identify a vertex or cell in the
whole;

2000 — rights reserve 1
©ISO 200 All righ d 7

ISO/WD 10303-5s:2000(E) Nssss

part_indices: the number of indices required to uniquely identify a vertex or cell in the part;

4.4.11 unstructured _mesh
A mesh topology that is not regular. It conceptually consists of the vertices of the mesh and

the cells forming the volume of the mesh. The cells shall all be connected by each cell having
at least one vertex in common with another cell.

EXPRESS specification:

*)

ENTITY unstructured_mesh
SUBTYPE OF (mesh);
vertex_count : INTEGER;

cell_count : INTEGER;
cells : ARRAY [1:cell_count] OF topological_region;
vertices : OPTIONAL ARRAY [1:vertex_count] OF vertex;
WHERE
oned : SELF/mesh.index_count = 1;
END_ENTITY;

(*

Attribute definitions:

vertex_count: is the number of vertices in the mesh. The vertex indices range from 1 to
vertex_count.

cell_count: is the number of cells in the mesh;
cells: is the topological _regions forming the mesh.
vertices: if required, are the vertexes referenced by the cells.

index_count: (inherited) the number of indices required to uniquely identify a vertex or cell in
the mesh;

Formal propositions:

oned: The value of index_count shall be 1.

4.4.12 vertex_defined_cell

A vertex_defined_cell is a topological _region that is bounded by vertices; the number of
vertices depends on the topological shape of the cell. The cell may have interior nodes; the
maximum number of interior nodes depends on both the shape and the order of the cell.

18 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

1 2
Linear
1 3 2
Quadratic
1 3 i 2
Cubic

Figure 10 — Linear, quadratic and cubic bar cells

EXPRESS specification:

*)
ENTITY vertex_defined_cell
SUBTYPE OF (topological_region);

shape : cell_shape;

order : element_order;

vn_count : INTEGER;

vertices : ARRAY [1:vn_count] OF INTEGER;

nodes : OPTIONAL ARRAY [1:opt_node_count] OF OPTIONAL INTEGER;
DERIVE

bound_count : positive := cell_counts(SELF) [1];

edge_node_count : positive := cell_counts(SELF) [2];

opt_node_count : positive := cell_counts(SELF) [3];
WHERE

wrl : ((NOT EXISTS(nodes)) AND (opt_node_count <= 0));
END_ENTITY;
(*

Attribute definitions:

description: annotation;

shape: the topological shape of the cell;

order: the order of the cell geometric interpolation;

vn_count: the number of bounding vertices plus the number of edge nodes;

vertices: is the indices of the cell vertices and edge nodes. The position of a vertex or an edge
node in the array depends on the shape of the cell as established graphically in Figure 10 to
Figure 16, where a vertex or edge node is indicated by a dot. The vertex labelled ‘1’ is the first
index in the array, that labelled ‘2’ is the second index in the array, and so on.

nodes: is the indices of the cell’s non-edge interior nodes. If a cell has no interior nodes then

ISO 2000 — All rights reserved 19
© g

ISO/WD 10303-5s:2000(E) Nssss

3
1 2
Linear
3
6 §)
1 4 2
Quadratic

Cubic

Figure 11 — Linear, quadratic and cubic triangle cells

20 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

Linear

Quadratic

Cubic

Figure 12 — Linear, quadratic and cubic quadrilateral cells

— rights reserve 1
©ISO 2000 All righ d 2

ISO/WD 10303-5s:2000(E) Nssss

Linear

Cubic

Figure 13 — Linear, quadratic and cubic hexahedron cells

22 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

Linear

Quadratic

Cubic

Figure 14 — Linear, quadratic and cubic wedge cells

2000 — rights reserve 2
©ISO 200 All righ d 3

ISO/WD 10303-5s:2000(E) Nssss

Linear

Cubic

Figure 15 — Linear, quadratic and cubic tetrahedron cells

24 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

Linear

Quadratic

Cubic

Figure 16 — Linear, quadratic and cubic pyramid cells

— rights reserve 5
©ISO 2000 All righ d 2

ISO/WD 10303-5s:2000(E) Nssss

the attribute shall have no value. The ordering of the indices of the interior nodes depends on
the shape and order of the cell as established graphically in Figure 10 to Figure 16, where a
non-edge interior node is indicated by a circle. The node labelled v + 1, where v is the value of
vn_count, is the first index in the array, that labelled v 4+ 2 is the second index in the array,
and so on. If a particular interior node is not supported by the cell, that position in the array
shall be given the value 7.

bound_count: is the number of cell bounding vertices; it is determined by the value of shape;

edge_node_count: is the number of interior cell nodes located on the cell edges; it is determined
by the combination of the values of shape and order;

opt_node_count: is the potential number of interior cell nodes which are not located on the
cell edges; it is determined by the combination of the values of shape and order;

NOTE 1 The maximum total number of potential geometric locations is given by the sum of bound_-
count, edge_node_count and opt_node_count.

Formal propositions:

wrl: If the opt_node_count is zero or less then nodes shall have no value.
4.4.13 mesh_data

mesh_data associates data values with a mesh.

EXPRESS specification:

*)
ENTITY mesh_data
ABSTRACT;
descriptions : LIST OF text;
id : label;
the_mesh : mesh;
data : GENERIC;
END_ENTITY;

SUBTYPE_CONSTRAINT scl_mesh_data FOR mesh_data;
ABSTRACT SUPERTYPE;
ONEOF (mesh_cell_data,
mesh_vertex_data) ;
END_SUBTYPE_CONSTRAINT;
(*

Attribute definitions:

descriptions: annotation;

26 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

id: an identifier;
the_mesh: The mesh;
data: The data.

4.4.14 mesh_cell_data

mesh_cell_data associates data values with the cells of a mesh.

EXPRESS specification:

*)

ENTITY mesh_cell_data
SUBTYPE OF (mesh_data);
SELF/mesh_data.data : data_array;

WHERE

wrl : SELF/mesh_data.the_mesh.index_count = data.dimension;
END_ENTITY;
(*

Attribute definitions:

the_mesh: (inherited) the mesh;
data: (inherited) the cell data.

Formal propositions:

wrl: The index_count of the mesh and the dimension of the data shall have the same value.

4.4.15 mesh vertex_data

mesh_vertex_data associates data values with the vertices of a mesh.

EXPRESS specification:

*)

ENTITY mesh_vertex_data
SUBTYPE OF (mesh_data);
SELF/mesh_data.data : data_array;

WHERE
wrl : SELF/mesh_data.the_mesh.index_count = data.dimension;
END_ENTITY;

ISO 2000 — All rights reserved 27
© g

ISO/WD 10303-5s:2000(E) Nssss

(*

Attribute definitions:

the_mesh: (inherited) the mesh,;

data: (inherited) the vertex data.

Formal propositions:

wrl: The index_count of the mesh and the dimension of the data shall have the same value.

4.5 mesh_topology_schema function definitions
4.5.1 this_schema

The function this_schema returns a STRING containing the name of the schema.

EXPRESS specification:

*)

FUNCTION this_schema : STRING;
RETURN (’MESH_TOPOLOGY_SCHEMA”) ;

END_FUNCTION;

(*

Argument definitions:

RETURNS: The uppercase name of the schema.
4.5.2 cell_counts

cell_counts takes a vertex_defined_cell as its argument and returns the numbers of vertices
and nodes required to define the cell.

EXPRESS specification:

*)
FUNCTION cell_counts(arg : vertex_defined_cell) : ARRAY[1:3] OF INTEGER;
LOCAL
oml : INTEGER :
omlsq : INTEGER :

0; -- (order - 1)
oml*x2; -- (order - 1) squared

28 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)
vts : INTEGER; —-- number of bounding vertices
eds : INTEGER; —-- number of edges
qf : INTEGER := O; —-- number of quadrilateral faces
tf : INTEGER := O; -- number of triangular faces
result : ARRAY [1:3] OF INTEGER := [0,0,0];

END_LOCAL;

CASE arg.order OF
linear : oml := 0;
quadratic : oml := 1;
cubic :oml := 2;
OTHERWISE : RETURN(result);
END_CASE;
omlsq := oml**2;
CASE arg.shape OF
single :
BEGIN
vts := 1; eds := 0; qf := 0; tf := 0;
result[1] := vts;
result[2] := omlx*eds; --0, 0,0
result[3] := 0; --0, 0,0
END;
bar :
BEGIN
vts := 2; eds :=1; qf := 0; tf := 0O;
result[1] := vts;
result[2] := omlx*eds; -0, 1, 2
result[3] := 0; --0, 0,0
END;
quadrilateral :
BEGIN
vts := 4; eds := 4; qf :=1; tf := 0;
result[1] := vts;
result[2] := omlx*eds; --0, 4, 8
result[3] := omlsqg*qf; -0, 1, 4
END;
triangle :
BEGIN
vts := 3; eds := 3; qf := 0; tf :=1;
result[1] := vts;
result[2] := oml*eds; --0, 3, 6
result[3] := (oml-1)*tf; -— 0, 1
CASE arg.order OF
linear : result[3] := 0; --0
END_CASE;
END;
polyhedron :
BEGIN
vts := arg.vn_count; eds := arg.vn_count;
result[1] := vts;
result[2] := 0;
result[3] := 0;
END;

©ISO 2000 — All rights reserved

29

ISO/WD 10303-5s:2000(E)

hexahedron :
BEGIN
vts := 8;
result[1]
result[2]
result [3]
END;
wedge :
BEGIN
vts := 6;
result[1]
result [2]
result[3]
END;
tetrahedron :
BEGIN
vts := 4;
result[1]
result[2]
result [3]

eds :

eds :

eds :

CASE arg.orde

linear :

END_CASE;
END;
pyramid :
BEGIN
vts := 5;
result[1]
result[2]
result[3]

re

eds :

:= 12; gf := 6; tf :=
vts;
omlxeds;
omlsqg*(qf+oml) ;

=9; qf := 3; tf :=
vts;
omlx*eds;

omlsqxqf + omlx*tf;

vts;
oml*eds;
(om1-1)*tf;
r OF
sult[3]

0;

8; qf
vts;
oml*eds;

omlsq*qf + (oml-1)*tf;

CASE arg.order OF

linear :

END_CASE;
END;
END_CASE;
RETURN (result) ;
END_FUNCTION;
(*

Argument definitions:

arg: A cell;

re

sult[3] 0;

Nssss

12, 24
7, 32

18
16

RETURNS: A 3 element array of INTEGER, where the first element is the number of vertices
defining the bounds of the cell, the second is the number of interior nodes located on an edge,
and the third is the maximum number of (potential) interior nodes not located on an edge.

30

©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

EXPRESS specification:

*)
END_SCHEMA; -- end of mesh_topology_schema
(*

5 data_array_schema

The following EXPRESS declaration begins the data_array_schema and identifies the neces-
sary external references.

EXPRESS specification:

*)
{iso standard 10303 part (11) version (4)}
SCHEMA data_array_schema;
REFERENCE FROM measure_schema
(dimensional_exponents,
named_unit) ;
REFERENCE FROM support_resource_schema
(label,
text) ;
REFERENCE FROM mathematical_functions_schema
(explicit_table_function);

(*

NOTE The schemas referenced above can be found in the following parts of ISO 10303:
measure_schema ISO 10303-41

support_resource_schema ISO 10303-41

mathematical_functions_schema ISO 10303-50
5.1 Introduction

This schema defines and describes the structures and types that may be used to contain data
values.

5.2 Fundamental concepts and assumptions

The structure type data_array is a general purpose structure for holding arrays of data which
can be represented by the EXPRESS simple data types. Every element in a data_array shall
be of the same data type. It may be used to describe, for example, mesh coordinates or any

other information, whether or not it is related the mesh topologies.

Five classes of numeric data are addressed with the data_array structure type:

ISO 2000 — All rights reserved 31
© g

ISO/WD 10303-5s:2000(E) Nssss

a) dimensional data (e.g., velocity in units of m/s);

b) nondimensional data normalized by dimensional reference quantities;

¢) nondimensional data with associated nondimensional reference quantities;
d) nondimensional parameters (e.g., Reynolds number, pressure coefficient);
e) pure constants (e.g., 7, €).

Each of the five classes of numeric data requires different information to describe dimensional
units or normalization associated with the data.

Identifiers or names can be attached to data_array entities to identify and describe the quantity
being stored. To facilitate communication between different applications, provision is made for a
set, or sets, of standardized data-name identifiers. For any identifier in these sets, the associated
data should be unambiguously understood. For coordinate data a list of standardized identifiers
is provided. For example, the standardized identifier coordinate_y shall be used for data arrays
containing values representing Y-coordinates in a Cartesian coordinate system.

All standardized identifiers denote scalar quantities; this is consistent with the intended use of
the data_array structure type to describe an array of scalars. For quantities that are vectors,
such as velocity, their components are listed.

Included with the lists of standard data-name identifiers, the fundamental units of dimensions
associated with that quantity are provided. The following notation is used for the fundamental
units: M is mass, L is length, T is time, © is temperature and « is angle. These fundamental
units are directly associated with the elements of the DimensionalExponents_t structure.

For example, a quantity that has dimensions ML/T corresponds to MassExponent = +1,
LengthExponent = +1, and TimeExponent = -1.

5.3 data_array_schema type definitions
5.3.1 data_class

data_class is an enumeration type that identifies the class of a given piece of data.

EXPRESS specification:

*)

TYPE data_class = EXTENSIBLE ENUMERATION OF
(unspecified,
user_defined,
dimensional,

normalized_by_dimensional,

32 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

normalised_by_unknown_dimensional,
nondimensional_parameter,
dimensionless_constant);

END_TYPE;

(€

Enumerated item definitions:

unspecified: No identification;
user_defined: meaning is assigned external to this standard;
dimensional: Identifies dimensional data;

normalized_by_dimensional: Identifies nondimensional data that is normalised by dimen-
sional reference quantities;

normalised_by_unknown_dimensional: Identifies nondimensional data typically found in
completely nondimensional object base where all field and reference data is nondimensional;

nondimensional_parameter: Identifies nondimensional parameters like Mach number or lift
coefficient;

dimensionless_constant: Identifies constants like .
5.3.2 data_name

data_name is an identifier for the contents of a data_array. It is a superset of standard._-
data_name and adhoc_data_name.

EXPRESS specification:

*)
TYPE data_name = SELECT
(standard_data_name,
adhoc_data_name) ;
END_TYPE;
(*

5.3.3 adhoc_data_name

adhoc_data_name is a STRING providing a non-standard identifier for the contents of a data_-
array.

EXPRESS specification:

*)

©ISO 2000 — All rights reserved 33

ISO/WD 10303-5s:2000(E) Nssss

TYPE adhoc_data_name = STRING;
END_TYPE;
(*

5.3.4 standard_data_name

standard_data_name is a listing of standardized identifiers for the contents of a data_array.

EXPRESS specification:

*)

TYPE standard_data_name = EXTENSIBLE SELECT
(coordinate_data_name,
other_data_name) ;

END_TYPE,;

(*

5.3.5 coordinate_data_name
coordinate_data_name is an enumeration of standardized coordinate systems data.

Coordinate systems for identifying physical location are as follows:

System 3-D 2-D
Cartesian (z,y,2) (x,y) or (z,z) or (y, 2)
Cylindrical (r,0,z) (r,0)
Spherical (r,0,90)

Auxiliary &n,¢) (&) or (§C) or (n,¢)

Associated with these coordinate systems are the following unit vector conventions:

z-direction €, r-direction é, §-direction é¢
y-direction ¢, f-direction &y n-direction &,
z-direction é, ¢-direction &4 ¢-direction é,

Note that é,, &g and é4 are functions of position.

It is expected that one of the ‘standard’ coordinate systems (cartesian, cylindrical or spherical)
will be used within a mesh (or perhaps the entire object base) to define grid coordinates and
other related data. The auxiliary coordinates may be used for special quantities, such as forces
and moments, which may not be defined in the same coordinate system as the rest of the data.
When auxiliary coordinates are used, a transformation shall also be provided to uniquely define
them.

34 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

Table 5 — Coordinate data name identifiers

Data name identifier | Description Units
coordinate_x L
coordinate_y Y L
coordinate_z z L
coordinate_r r L
coordinate_theta 0 @
coordinate_phi o} «
coordinate_normal coordinate in direction of &, L
coordinate_tangential | tangential coordinate (2-D only) | L
coordinate_xi & L
coordinate_eta n L
coordinate_zeta ¢ L
coordinate_transform | transformation matrix (T) —

EXAMPLE 1 The transform from cartesian to orthogonal auxiliary coordinates is,

€¢ €x
€y =T ey y
€ é:

where T is an orthonormal matrix (2x2 in 2-D and 3x3 in 3-D).

In addition, normal and tangential coordinates are often used to define boundary conditions and
data related to surfaces. The normal coordinate is identified as n with the unit vector é&,.

EXPRESS specification:

*)

TYPE coordinate_data_name = EXTENSIBLE ENUMERATION OF
(coordinate_x,
coordinate_y,
coordinate_z,
coordinate_r,
coordinate_theta,
coordinate_phi,
coordinate_normal,
coordinate_tangential,
coordinate_xi,
coordinate_eta,
coordinate_zeta,
coordinate_transform) ;

END_TYPE;

(*

The meanings of the enumerated coordinate data identifiers are given in Table 5.

©ISO 2000 — All rights reserved 35

ISO/WD 10303-5s:2000(E) Nssss

5.3.6 other_data_name

other_data_name is an enumeration of standardized data identifiers.

EXPRESS specification:

*)

TYPE other_data_name = EXTENSIBLE ENUMERATION OF
(unspecified,
nondimensional);

END_TYPE;

(*

Enumerated item definitions:

unpsecified: Not specified;

nondimensional: Non-dimensional data.

5.4 data_array schema entity definitions
5.4.1 data_conversion

data_conversion contains conversion factors for recovering raw dimensional data from given
nondimensional data, or for linear conversion of values in one set of units to the equivalent values
in another set of compatible units.

Given a nondimensional piece of data, Data(nondimensional), the conversion to ‘raw’ dimen-
sional form is:

Data(raw) = Data(nondimensional)*scale + offset

EXAMPLE 1 The data_conversion from Fahrenheit temperature units to Celsius temperature units
is:

c2f := data_conversion(5/9, -((5%32)/9));

EXPRESS specification:

*)
ENTITY data_conversion;
scale : REAL;
offset : REAL;
END_ENTITY;

36 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

(*

Attribute definitions:

scale: The scaling factor.

offset: The offset.

5.4.2 dimensional units
dimensional_units describes the system of units used to measure dimensional data.

If all the attributes have the value Null, that is equivalent to saying that the data described by
that instance is nondimensional.

EXPRESS specification:

*)

ENTITY dimensional_units;
length : OPTIONAL named_unit;
mass : OPTIONAL named_unit;
time : OPTIONAL named_unit;
current : OPTIONAL named_unit;
temperature : OPTIONAL named_unit;
amount_of_substance : OPTIONAL named_unit;
luminous_intensity : OPTIONAL named_unit;
plane_angle : OPTIONAL named_unit;
solid_angle : OPTIONAL named_unit;

END_ENTITY;

(*

Attribute definitions:

length: The unit of length;

mass: The unit of mass;

time: The unit of time;

current: The unit of electric current;

temperature: The unit of thermodynamic temperature;
amount_of_substance: The unit of the amount of substance;
luminous_intensity: The unit of luminous intensity;

plane_angle: The unit of plane angle;

©ISO 2000 — All rights reserved 37

ISO/WD 10303-5s:2000(E) Nssss

solid_angle: The unit of solid angle.

5.4.3 index_list

index _list specifies a list of indices.

EXPRESS specification:

*)
ENTITY index_list;
nindices : INTEGER;
indices : LIST [1:7] OF ARRAY [1:nindices] OF INTEGER;
END_ENTITY;
(*

Attribute definitions:

nindices: The number of indices to map to a unique array location.

indices: The indices.

5.4.4 index range

index_range specifies the beginning and ending indices of a subrange.

EXPRESS specification:

*)
ENTITY index_range;

nindices : INTEGER;

start : ARRAY [1:dimension] OF INTEGER;
finish : ARRAY [1:dimension] OF INTEGER;
END_ENTITY;

(*

Attribute definitions:

nindices: The number of indices required to identify an element of the range.
start: The indices of the minimal corner of the subrange;

finish: The indices of the maximal corner of the subrange.

38 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

5.4.5 data_array

data_array describes a multi-dimensional data array of a given type, dimensionality and size in
each dimension. The data may be dimensional, nondimensional or pure constants. Qualifiers are
provided to describe dimensional units or normalization information associated with the data.

This structure is formulated to describe an array of scalars. Therefore, for vector quantities
(e.g., a position vector or a velocity vector), seperate instances are required for each component
of the vector.

EXAMPLE 1 The cartesian coordinates of a 3-D structured mesh are described by three separate data
arrays: one for z, one for y, and one for z.

The optional attributes of data_array provide information for manipulating the data, including
changing units or normalization. Within a given instance of data_array, the class of data and all
information required for manipulations may be completely and precisely specified by the values
of class, units, exponents and conversion. class identifies the class of data and governs the
manipulations that can be performed.

— dimensional: When class = dimensional, the data is dimensional. The optional qual-
ifiers units and exponents describe dimensional units associated with the data. These
qualifiers are provided to specify the system of dimensional units and the dimensional ex-
ponents, respectively.

EXAMPLE 2 If the data is the z-component of velocity, then units will state that the perti-
nent dimensional units are, say, metre and second; exponents will specify that the pertinent
dimensional exponents are length = 1 and time = -1. Combining the information gives the units

m/s.

If exponents is absent, then the appropriate dimensional exponents can determined by
convention provided the value of identifier is one of the standard_data_name identifiers,
otherwise the exponents are unspecified.

— normalized_by_dimensional: When class = normalized_by_dimensional, the data is
nondimensional and is normalized by dimensional reference quantities. All optional entities
in data_array are used. conversion contains factors to convert the nondimensional data
to ‘raw’ dimensional data; these factors are scale and offset. The conversion process is as
follows:

Data(raw) = Data(nondimensional)*scale + offset
where Data(nondimensional) is the original nondimensional data, and Data(raw) is the
converted raw data. This converted raw data is dimensional, and the optional qualifiers
units and exponents describe the appropriate dimensional units and exponents. Note

that units and exponents also describe the units for scale and offset.

If conversion is absent, the equivalent defaults are scale = 1 and offset = 0. If either

©ISO 2000 — All rights reserved 39

ISO/WD 10303-5s:2000(E) Nssss

units or exponents is absent, follow the rules described for Dimensional data above.

— mnormalized_by_unknown_dimensional: When class = normalized_by_unknown_di-

40

mensional, the data is nondimensional and is normalized by some unspecified dimensional
quantities. This type of data is typical of a completely nondimensional test case, where all
field data and all reference quantities are nondimensional.

Only the exponents qualifier is used in this case, although it is expected that this qualifier
will be seldom utilized in practice. For entities of data_array that are not among the
list of standardized data-name identifiers, the qualifier could provide useful information by
defining the exponents of the dimensional form of the nondimensional data.

Rather than providing qualifiers to describe the normalization of the data, all data of type
normalized_by_unknown_dimensional in a given object base shall be nondimensional-
ized consistently. This is done by picking one set of mass, length, time and temperature
scales and normalizing all appropriate data by these scales. This process is described in
detail in the following.

NOTE 1 The practice of nondimensionalization within flow solvers and other application codes is
quite popular. The problem with this practice is that to manipulate the data from a given code,
one must often know the particulars of the nondimensionalization used. This largely results from
what can be termed inconsistent normalization — more than the minimum required scales are used
to normalize data within the code.

EXAMPLE 3 In one CFD flow solver, the following nondimensionalization is used:

i‘ZLL’/L, ﬂ:u/com ﬁ:p/pooa
J=y/L, D=0/tx, P=p/(pscd),
Z:Z/L7 w:w/COO7 #:,U/Mooa

where (z,y, z) are the cartesian coordinates, (u,v,w) are the cartesian components of velocity, p
is static density, p is static pressure, c is the static speed of sound, and p is the molecular viscos-
ity. In this example, tilde quantities () are nondimensional and all others are dimensional. Four
dimensional scales are used for normalization: L (a unit length), peo, ¢oo and peo. However, only
three fundamental dimensional units are represented: mass, length and time. The extra normalizing
scale leads to inconsistent normalization. The primary consequence of this is additional nondi-
mensional parameters, such as Reynolds number, appearing in the nondimensionalized governing
equations where none are found in the original dimensional equations. Many definitions, including
skin friction coefficient, also have extra terms appearing in the nondimensionalized form. This adds
unnecessary complication to any data or equation manipulation associated with the flow solver.

Consistent normalization avoids many of these problems. Here the number of scales used for nor-
malization is the same as the number fundamental dimensional units represented by the data. Using
consistent normalization, the resulting nondimensionalized form of equations and definitions is iden-
tical to their original dimensional formulations. One piece of evidence to support this assertion is
that it is not possible to form any nondimensional parameters from the set of dimensional scales
used for normalization.

An important fallout of consistent normalization is that the actual scales used for normalization
become immaterial for all data manipulation processes. To illustrate this consider the following
nondimensionalization procedure: Let M (mass), L (length) and T (time) be arbitrary dimensional

©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

scales by which all data is normalized (neglect temperature data for the present). The nondimen-
sional data follows:

v =a/L, o =u/(LJT), o =p/(M/L?),
y =y/L, v =v/(L/T). P =p/(M/(LT?)),
Y =zJL, W =w/(L)T), § = p/(M/(LT)),

where primed quantities are nondimensional and all others are dimensional.

Consider an existing object base where all field data and all reference data is nondimensional and
normalized as shown. Assume the object base has a single reference state given by,

Tyof = Tref/ Ly Urof = Uref/ (L/T), Prof = Pref/ (M/L?),
Yret = Yret/Ls Vpep = Vret/(L/T), Plop = Preg/ (M/(LT?))
Zref = #ref/ L Wt = Wret/ (L/T), Mot = Hrpet/ (M/(LT)).

If a user wanted to change the nondimensionalization of grid-point pressures, the procedure is
straightforward. Let the desired new normalization be given by p;’j & = Dijk/ (prefcief), where all
terms on the right-hand-side are dimensional, and as such they are unknown to the object base
user. However, the desired manipulation is possible using only nondimensional data provided in the
object base,
Plin = Diji/ (PrefClef)
 pge ML [L/Tr
M/(LT?) pref | Cref

= p;jk/(p;ef(c;ef)2)
Thus, the desired renormalization is possible using the object base’s nondimensional data as if it
were actually dimensional. There is, in fact, a high degree of equivalence between dimensional data
and consistently normalized nondimensional data. The procedure shown in this example should
extend to any desired renormalization, provided the needed reference-state quantities are included
in the object base.

This example points out two requirements for data in the class normalized_by_unknown _-
dimensional,

a) All nondimensional data within a given object base that has class = normalized -
by_unknown_dimensional shall be consistently normalized.

b) Any nondimensional reference state appearing in a object base should be sufficiently
populated with reference quantities to allow for renormalization procedures.

The second of these stipulations is somewhat ambiguous, but good practice would suggest
that a flow solver, for example, should output to the object base all static and stagnation

reference quantities defined in the code.

These two stipulations lead to the following:

e The dimensional scales used to nondimensionalize all data are immaterial, and there is
no need to identify these quantities in an object base.

— rights reserve 1
©ISO 2000 All righ d 4

ISO/WD 10303-5s:2000(E) Nssss

42

e The dimensional scales need not be reference-state quantities provided in the object
base. For example, a given object base could contain freestream reference state condi-
tions, but all the data is normalized by sonic conditions (which are not provided in the
object base).

e All renormalization procedures can be carried out treating the data as if it were di-
mensional with a consistent set of units.

e Any application code that internally uses consistent normalization can use the data
provided in an object base without modification or transformation to the code’s internal
normalization.

EXAMPLE 4 A CFD application code that internally uses inconsistent normalization could easily
read and write data to a nondimensional object base that conforms to the above stipulations. On
output, the code could renormalize data so it is consistently normalized. Probably, the easiest
method would be to remove the molecular viscosity scale (i), and only use L, po and ¢, for all
normalizations (recall these are dimensional scales). The only change from the above example would
be the nondimensionalization of viscosity, which would become, fi = 1/ (pooCoocL). The code could
then output all field data as,

Zijk = Tije/L, Uijk = Uijk/Coo) Pijk = Pijk/ Poos

Giik = yisn/ L Bijk = Vijk/c 5iik = Dijk/ (PooC)
Yijk Yijk) ijk ijk/ Coo) ~ngk Pijk/\PooCso)s
Zijk = zijk/ L, Wiji = Wijk/Coos [y = Hijh/(PocCocl),

and output the freestream reference quantities,

'{Loo:Uoo/Cooa ~ ﬁoo:poo/poozlv
oo = Voo/Coos Poo = Doo/ (Po€i) = 1/7,
woc = woo/cooa ﬂoo = Moo/(poocooL) ~ O(l/Re)7

where v is the specific heat ratio (assumes a perfect gas) and Re is the Reynolds number.

On input, the flow solver should be able to recover its internal normalizations from the data in a
nondimensional object base by treating the data as if it were dimensional.

NondimensionalParameter: When class = Nondimensional_parameter, the data is
a nondimensional parameter (or array of nondimensional parameters). Examples include
Mach number, Reynolds number and pressure coefficient. These parameters are prevalent
in CFD, although their definitions tend to vary between different application codes.

Nondimensional parameters are distinguished from other data classes by the fact that they
are always dimensionless. In a completely nondimensional object base, they are distinct in
that their normalization is not necessarily consistent with other data.

Typically, the units, exponents and conversion qualifiers are not used for nondimen-
sional parameters; although, there are a few situations where they may be used (these are
discussed below). Rather than rely on optional qualifiers to describe the normalization, any
nondimensional parameter shall be accompanied by their defining scales;

©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

EXAMPLE 5 An example is Reynolds number defined as Re = VL/v, where V, L and v are
velocity, length and viscosity scales, respectively. Note that these defining scales may be dimensional
or nondimensional data.

In certain situations, it may be more convenient to use the optional qualifiers of data_-
array to describe the normalization used in nondimensional parameters. These situations
must satisfy two requirements: First, the defining scales are dimensional; and second, the
nondimensional parameter is a normalization of a single ‘raw’ data quantity and it is clear
what this raw data is.

EXAMPLE 6 FExamples that satisfy this second constraint are pressure coefficient, where the raw
data is static pressure, and lift coefficient, where the raw data is the lift force. Conversely, Reynolds
number is a parameter that violates the second requirement — there are three pieces of raw data
rather than one that make up Re.

For nondimensional parameters that satisfy these two requirements, the qualifiers units,
exponents and conversion may be used to recover the raw dimensional data.

dimensionless_constant: When class = dimensionless_constant, the data is a con-
stant (or array of constants) with no associated dimensional units. The units, exponents
and conversion qualifiers are not used.

EXPRESS specification:

*)

ENTITY data_array;
descriptions : LIST OF text;

id : label;

dimension : INTEGER;

counts : ARRAY [1:dimension] OF INTEGER;
data : explicit_table_function; -- Part 50

classifier : OPTIONAL data_name;

units_class : OPTIONAL data_class;
WHERE
wrl : data.shape = total_number_of_elements(counts);

END_ENTITY;

SUBTYPE_CONSTRAINT scl_data_array FOR data_array;
ONEOF (dimensional_data_array,

nondimensional_data_array) ;

END_SUBTYPE_CONSTRAINT;

(*

Attribute definitions:

descriptions: is annotation;

©IS

O 2000 — All rights reserved 43

ISO/WD 10303-5s:2000(E) Nssss

id: is a user-specified instance identifier;

dimension: The number of dimensions in the multidimensional data array;

counts: The array sizes for each dimension;

data: The data values;

classifier: An identifier or name that identifies and describes the quantity being stored;

units_class: The class of data;

Formal propositions:

wrl: The data shall have the same number of elements as required by counts.

5.4.6 dimensional data_array

A dimensional_data_array is a data_array holding data that is dimensional.

EXPRESS specification:

*)
ENTITY dimensional_data_array
SUBTYPE OF (data_array);

units : OPTIONAL dimensional_units;
exponents : OPTIONAL dimensional_exponents; -- Part 41 measure_schema
conversion : OPTIONAL data_conversion;
WHERE
wrl : NOT EXISTS(SELF/data_array.units_class);
END_ENTITY;
(*

Attribute definitions:

units: The dimensional units of the data;
exponents: The dimensional exponents;

conversion: The normalization.

Formal propositions:

wrl: The (inherited) units_class attribute shall have no value.

44 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

5.4.7 nondimensional_data_array

A nondimensional data_array is a data_array holding data that is not dimensional.

EXPRESS specification:

*)
ENTITY nondimensional_data_array
SUBTYPE OF (data_array);
WHERE
wrl : (units_class <> dimensional) AND
(units_class <> unspecified);
END_ENTITY;
(*

Formal propositions:

wrl: The value of the (inherited) units_class attribute shall be neither dimensional nor
unspecified.

5.5 data_array_schema function definitions
5.5.1 total number_of elements

total_ number_of_elements takes an aggregate of positive integers as an argument and returns
the product of the values.

EXAMPLE 1 If the argument represents the dimensions of a multi-dimensional array then the calcu-
lated result is the number of elements necessary for an equivalent single-dimensional array.

EXPRESS specification:

*)
FUNCTION total_number_of_elements (arg : AGGREGATE OF INTEGER) : INTEGER;
LOCAL
total : INTEGER := 1;
END_LOCAL;
REPEAT i := 1 TO SIZEOF(arg);
total := totalxargli];
END_REPEAT;
RETURN (total);
END_FUNCTION;
(*

ISO 2000 — All rights reserved 45
© g

ISO/WD 10303-5s:2000(E)

Argument definitions:

arg: An aggregate of integers.

RETURNS: The product of the elements of arg.

EXPRESS specification:

*)
END_SCHEMA; -- end of data_array_schema
(*

46

Nssss

©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

Annex A
(normative)

Short names of entities

Table A.1 provides the short names of entities specified in this part of ISO 10303. Requirements
on the use of short names are found in the implementation methods included in ISO 10303.

NOTE The short names are available from the Internet — see annex C.

2000 — rights reserve
©ISO 200 All righ d 47

ISO/WD 10303-5s:2000(E) Nssss

Annex B

(normative)
Information object registration

B.1 Document identification
To provide for unambiguous identification of an information object in an open system, the object identifier
{ iso standard 10303 part(5s) version(-1) }

is assigned to this part of ISO 10303. The meaning of this value is defined in ISO/IEC 8824-1, and is
described in ISO 10303-1.

B.2 Schema identification

To provide for unambiguous identification of the mesh_topology_schema in an open information sys-
tem, the object identifier

{ iso standard 10303 part(5s) version(1) object(1) mesh-topology-schema(1) }

is assigned to the mesh_topology_schema schema (see 4). The meaning of this value is defined in
ISO/IEC 8824-1, and is described in ISO 10303-1.

To provide for unambiguous identification of the data_array_schema in an open information system,
the object identifier

{ iso standard 10303 part(5s) version(1) object(1) data-array-schema(l) }

is assigned to the data_array_schema schema (see 5). The meaning of this value is defined in ISO/IEC 8824-
1, and is described in ISO 10303-1.

48 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

Annex C

(informative)

EXPRESS listing

This annex references a listing of the EXPRESS entity names and corresponding short names as specified
in this part of ISO 10303. It also references a listing of each EXPRESS schema specified in this part
of ISO 10303, without comments or other explanatory text. These listings are available in computer-
interpretable form and can be found at the following URLs:

Short names: <http://www.mel.nist.gov/div826/subject/apde/snr/>
EXPRESS: <http://www.mel.nist.gov/step/parts/partbw/cd/>

If there is difficulty accessing these sites contact ISO Central Secretariat or contact the ISO TC 184/SC4
Secretariat directly at: sc4sec@cme.nist.gov.

NOTE The information provided in computer-interpretable form at the above URLs is informative.
The information that is contained in the body of this part of ISO 10303 is normative.

2 — rights reserve 9
©ISO 2000 All righ d 4

ISO/WD 10303-5s:2000(E) Nssss

Annex D

(informative)

EXPRESS-G diagrams

The diagrams in this annex correspond to the EXPRESS schemas specified in this part of ISO 10303.
The diagrams use the EXPRESS-G graphical notation for the EXPRESS language. EXPRESS-G is
defined in annex D of ISO 10303-11.

________ I topology_schema. !
\ topological representation_item !

I
I
I
I
I
I
I
|
5 S
I | I
I | I
I I
E support_resource_schema.
! ! text !
| L 1,2 (6,8)
|
boundary B : A descriptions L[Oﬂ A
| topological_region | | mesh |
dimension index_count
1,1 (3) d INTEGER |
1
Q
(1,4 (5, 7)) (3,1 unstructuredmesh) (2,1 structured_mesh)

Figure D.1 — Entity level diagram of mesh_topology_schema schema (page 1 of 8)

(4,1 rind) (2,2 (7)> —q rectangular_grid |
Q
|
|
|
rind_planes!
2,1 (1) 0 (ABS) structured_mesh L d cylindrical_grid
vertex_counts cell_counts
All:index_count) All:index_count)

O O
INTEGER

Figure D.2 — Entity level diagram of mesh_topology schema schema (page 2 of 8)

—q pyramidal_grid |

50 ©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

3,1 (1)

_______________ (J
| ! .
: : vertices
Y topology_schema. \ - - _@[_li\ie_rt_e_x:c_o_u_n:c]_ vertex count

vertex O
| | unstructured_mesh INTEGER I
I I
““““““““ ! cells Q

AJl:cell_count cell_count

C 1,1 topological _region)O [)

Figure D.3 — Entity level diagram of mesh_topology_schema schema (page 3 of 8)

index_count

planes A[1:2*index_count)|
INTEGER | | INTEGER | |

Figure D.4 — Entity level diagram of mesh_topology_schema schema (page 4 of 8)

vertices A[l:vn_count]

Q

nodes A[l:opt_node_count]

vertex_defined_

(DER) edge_node_count

cell N
1,4 topological region y———on—g
(OPOOBICaTTEION (DER) bound_count
____________________ .
I vn_count
| INTEGER | |

\/ structural_response_ |
representation_schema order
- ' (DER) opt_node_count
element_order

|
E (DER) count

Figure D.5 — Entity level diagram of mesh_topology_schema schema (page 5 of 8)

— rights reserve 51
©ISO 2000 All righ d

ISO/WD 10303-5s:2000(E) Nssss

C 1,2 mesh >

product operands L[2:2]

product_of_mesh |

Figure D.6 — Entity level diagram of mesh_topology schema schema (page 6 of 8)

INTEGER
O O

(DER) index_count cell_identifier A[l:index_count]
| cell_of structured_mesh b (14 topologicalxegion)
the_mesh

C 2,2 structured_mesh)

partT Twhole lower_vertex A[l:whole_indices]

| INTEGER ||
fower-face Allwholendices] 5 0TAN] |
sed indices Afipart indices] A mGRR]
sedsenses Allpart-indices] 100 6T EAN]|
------------------------- CLINTEGER ||
------------------------- CLINTEGER [

Figure D.7 — Entity level diagram of mesh_topology_schema schema (page 7 of 8)

composition_of_structured_mesh

52 ©ISO 2000 — All rights reserved

Nssss

C 1,2 mesh >

Tthemesh

ISO/WD 10303-5s:2000(E)

(AE) mesh_data

|
id /7 support_resource_schema. I
label

1
Q
mesh_cell_data | mesh_vertex_data |
(RT) data (RT) data
__________ Q_________. R © S

) data_array_schema.
data_array

data_array_schema.
data_array I
|

- —-——

Figure D.8 — Entity level diagram of mesh_topology schema schema (page 8 of 8)

©ISO 2000 — All rights reserved

93

ISO/WD 10303-5s:2000(E) Nssss
A
| I
id Y~ support_resource_schema.
h label g
! |
L e o e e I
A
| I
descriptions L V" support_resource_schema. Y
h text |
! |
L e o e e I
dimension INTEGER I
data_array
counts A[l:dimension]
INTEGER | |
A
| I
data Ymathematical_functions_schema.\
\explicit_table_function |
! |
L e o e e I
classifier
O(2,1 data_name)
units.class § (X datacless |
junits_____ C(4,1 dimensional_units)
T i
I I
~ | |
—01 dimensional_data_array exponents m.easur.e,schema.
h dimensional_exponents g
| |
L e e e e e e 2 I
conversion_ ((3,1 data_conversion)

—q nondimensional_data_array |

Figure D.9 — Entity level diagram of data_array_schema schema (page 1 of 4)

54

©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

[Bnliystioniivstontii S [

i (EX) coordinate_data_name 1, |

Figure D.10 — Entity level diagram of data_array schema schema (page 2 of 4)

scale REAL I
3,1 (1) data_conversion
offset REAL I
nindices INTEGER I
index_list

indices L[1:7] A[l:nindices]
INTEGER

nindices

INTEGER

) start A[l:indices]
index_range INTEGER

finish A[l:nindices} _
INTEGER | |

Figure D.11 — Entity level diagram of data_array_schema schema (page 3 of 4)

©ISO 2000 — All rights reserved 55

ISO/WD 10303-5s:2000(E)

dimensional_units

Nssss

measure_schema.
named_unit

measure_schema.
named_unit

measure_schema.
named_unit

measure_schema.
named_unit

Figure D.12 — Entity level diagram of data_array schema schema (page 4 of 4)

56

©ISO 2000 — All rights reserved

Nssss ISO/WD 10303-5s:2000(E)

Index

adhoc_dataname (BYDPE)ttt 33
cell_counts (fUnCEION)t et 28
cell_of structured_mesh (entity)o 16
CEllLShAPE (BYPE) - vttt ettt 7
CellShaPE_ 0D (BFDE) - vttt ettt et e e e 7
Cell_ShapPE_ID (BFPE) - vttt ettt e e e 8
Cell_ShapPE 2D (BFPE) - vttt et e e e 8
CEllShaPe_ 3D (BYDE) - vttt ettt 9
composition_of_structured_mesh (entity)o i 17
coordinate_data_name (LYDPE)ottt e 35
cylindrical_grid (EIBIEY) u ittt e 14
data_array (ENBIEY) ...t 43
data_array_schema (SCHEIMA) oo 31
data_class (EFDE) ...t 32
data_conversion (ENtiby)o.iii i 36
dataname (TYDPE) ...ttt e e 33
dimensional_data_array (ENBITY)oute it 44
dimensional units (ENBILY)t e 37
INdex_List (EIBIEY) ..ottt 38
index_range (ENBIEY)ttt 38
mesh (ENbIbY) .o 9
mesh_cell_data (ENbIby)o 27
mesh_data (ENbIY)o 26
mesh_topology_schema (schema) 5
mesh_vertex_data (ENtItY)t 27
nondimensional_data_array (€ntity)ooiiiii e 45
other_dataname (EFPE)ttt et e e 36
product_of . mesh (ENBILY)ot e 11
pyramidal_grid (ENBIty)ttt 15
rectangular_grid (ENtiby)ottt 13
TINA (EIEIEY) .« oot 16
scl_data_array (Subtype CONSETAINt)ttt et e e 43
scl.mesh (Subtype COMSEraint)ooiiii e 9
scl_mesh_data (subtype COnStraint)oo.iuioii i 26
scl_structured mesh (subtype constraint)t 12
standard_dataname (FYPE)ttt 34
structured-mesh (EIEILY) . ..ottt 12
this_schema (FUNCEION)ot e 28
topological Teglon (ENBILY)ttt 10
total number_of_elements (function)o i e 45
unstructured_mesh (ENBILY) ... oo 18
vertex_defined_cell (entity) 19

©ISO 2000 — All rights reserved 57

